Digital Sensors and Sensor Systems: Practical Design

Book Description

Semiconductor and integrated sensor design are heavily driven by technology scaling. Rapid advances in microelectronics and nano-technologies have brought new challenges to the digital, smart, intelligent sensors and sensor systems design.

Because such design approach based on the frequency (time)-to-digital conversion has not been adequately covered in the literature before, this unique book aims to fill a significant gap and presents new knowledge in this emerging area of modern sensors.

The goal of this book is to help the practitioners achieve the best metrological and technical performances of digital sensors and sensor systems at low cost, and significantly to reduce time-to-market. It should be also useful for students, lectures and professors to provide a solid background of the novel concepts and design approach because of till now such topics have been covered adequately only in a few European and American universities.

Book features include:

- Each of chapter can be used independently and contains its own detailed list of references
- Easy-to-repeat experiments
- Practical orientation
- Dozens examples of various complete sensors and sensor systems for physical and chemical, electrical and non-electrical quantities
- Detailed description of technology driven and coming alternative to the ADC – a frequency (time)-to-digital conversion, well suited for technology scaling
- Easy design based on novel microelectronic components such as Universal Frequency-to-Digital Converters and Universal Sensors and Transducers Interfaces
- Describes engineering technique how to estimate a resulting, total error of designed sensor system

Digital Sensors and Sensor Systems: Practical Design will greatly benefit undergraduate and at PhD students, engineers, scientists and researchers in both industry and academia. It is especially suited as a reference guide for practitioners, working for Original Equipment Manufacturers (OEM) electronics market (electronics/hardware), sensor industry, and using commercial-off-the-shelf components, as well as anyone facing new challenges in technologies, and those involved in the design and creation of new digital sensors and sensor systems, including smart and/or intelligent sensors for physical or chemical, electrical or non-electrical quantities.

Read a book review.

Contents:

Preface

About the Author

List of Abbreviations

Chapter 1. Introduction

1.1 Modern Sensor Markets and Trends
1.2 Technology Challenges
1.3 Digital Sensors and Systems Design Approach
1.4 References

Chapter 2. Universal Frequency-to-Digital Converters
Chapter 3. Universal Sensors and Transducers Interface (USTI)

3.1 General Description
3.2 Features, Metrological Performance and Main Electrical Characteristics
3.3 Functionality
3.5 Applications
3.6 Pin Out and Housing
3.7 Experimental Investigations
3.8 USTI for Extended Temperature Range (USTI-EXT)
3.9 USTI for Wireless Sensor Networks Applications (USTI-WSN)
3.10 References

Chapter 4. Frequency-to-Digital Converter with Parallel Interface (FDCP)

4.1 General Description
4.2 Pin Out and Housing
4.3 Interfacing with Digital Signal Controller
4.4 Applications
4.5 References

Chapter 5. Optoelectronic Digital Sensors and Sensor Systems

5.1 Quasi-digital Optical Sensors State-of-the-Art
5.2 Design Approaches
5.3 Digital Color and Light Sensors Based on Series of UFDC-1 ICs
 5.3.1 Color-to-Digital Converter
 5.3.2 Light-to-Digital Converter
 5.3.3 Bus Capabilities
5.4 Digital Optoelectronic Sensors and Sensor Systems Based on USTI IC
 5.4.1 Light- and Color-to-Digital Converters
 5.4.2 Sensor System for Automatic Paper Type and Thickness Detection
 5.4.3 Non-Contact, Short Distance Measuring System
5.5 References

Chapter 6. Digital Temperature Sensors and Sensor Systems

6.1 Quasi-digital Temperature Sensors: State-of-the-Art
6.2 Digital Temperature Sensor Systems Based on Quasi-digital Sensors and FDC ICs
6.3 Digital Temperature Sensor Systems Based on RTDs and Thermocouples
6.4 Digital Temperature Sensor Systems Based on Analog Sensors and VFC
6.5 References

Chapter 7. Digital Pressure Sensors and Transducers

7.1 Quasi-digital Pressure Sensors: State-of-the-Art
7.2 Digital and Smart Pressure Sensors and Sensor Systems
 7.2.1 Interfacing with Frequency Outputs Pressure Sensors and Transducers
 7.2.2 Interfacing with Pulse Number Outputs Pressure Sensors and Transducers
 7.2.3 Digital Pressure Sensors and Transducers with Voltage-to-Frequency Conversion
 7.2.4 Digital Pressure Sensors with PWM and Duty-Cycle-to-Digital Conversion
7.3 References

Chapter 8. Digital Humidity, Dew Point and Moisture Sensors

8.1 Quasi-digital Humidity, Dew Point and Moisture Sensors: State-of-the-Art
8.2 Digital Humidity Sensing Modules Design
8.3 Experimental Results
8.4 References

Chapter 9. Digital Accelerometers, Inclinometers and Gyroscopes

9.1 Quasi-digital Accelerometers and Inclinometers: State-of-the-Art
9.2 Digital Accelerometers Design
 9.2.1 Accelerometers based on quasi-digital sensors
 9.2.2 Acceleration to Frequency and PWM Circuits
9.3 Digital Inclinometers Design
9.4 Digital Gyroscopes Design
9.5 References
Chapter 10. Digital Magnetic Sensors
10.1 Quasi-digital Magnetic Sensors: State-of-the-Art
10.2 Digital Magnetic Sensor Systems Design
10.3 References

Chapter 11. Rotational Speed Sensors
11.1 Rotational Speed Sensors: State-of-the-Art
11.2 Digital Rotational Speed Sensors Design
11.3 References

Chapter 12. Chemical Sensors and Biosensors
12.1 Quasi-Digital Chemical Sensors and Biosensors: State-of-the-Art
 12.1.1 Chemical Sensors Review
 12.1.2 Biosensors Review
12.2 Digital Sensor Systems Design Based on Quartz Crystal Microbalance and Other Chemical Principles
 12.2.1 QCM-based Sensor Systems
 12.2.2 Modeling and Experimental Results
 12.2.3 Other Applications
12.3 References

Chapter 13. Capacitive Sensors Interfacing
13.2 Direct Capacitive Sensors Interfacing
13.3 References

Chapter 14. Resistive Sensors Interfacing
14.1 Resistance-to-digital Converters: Introduction and Problem Definition
14.2 Direct Resistive Sensors Interface
14.3 References

Chapter 15. Resistive-Bridge Sensors Interfacing
15.1 Resistive-Bridge-to-digital Converters: State-of-the-Art Review
15.2 Direct Resistive-Bridge Sensors Interface
 15.3 Application Examples
 15.3.1 Strain Gages Emulation
 15.3.2 Differential Pressure Sensor Series SX30GD2
15.4 References

Chapter 16. DAQ Systems for Quasi-Digital Sensors and Transducers
16.1 Data Acquisition Systems: State-of-the-Art
16.2 DAQ Systems Design
 16.2.1 DAQ Channels for Quasi-Digital Signals
 16.2.2 DAQ Channels for Analog Signals
16.3 Multifunctional and Multiparametric Sensors, Transducers and Sensor Systems
16.4 References

Chapter 17. Intelligent Sensor Systems
17.1 Smart vs. Intelligent: Modern Definitions and Trends
17.2 IEEE 1451 Standard Extension and Adaptation for Quasi-Digital Transducers
 17.2.1 Smart IEEE 1451 Compatible Transducers and Modern Smart Sensor Definition
 17.2.2 Family of IEEE 1451 Standards and Quasi-Digital Sensors
 17.2.3 Physical Representation of IEEE 1451.2 for Quasi-Digital Sensors
 17.2.4 TEDS for Quasi-Digital Sensors and Transducers
 17.2.5 IEEE 1451.4 Mixed-Mode Interface for Quasi-Digital Sensors and Transducers
17.3 Self-Adaptive Sensors and Sensor Systems
 17.3.1 Adaptive Algorithms and Parametric Adaptation
 17.3.2 Examples of Self-Adaptive Intelligent Sensor Systems and Its Realizations
 17.3.2.1 Self-Adaptive Antilock Braking System (ABS)
 17.3.2.2 Self-Adaptive Smart Pressure Sensor System for Gas Pipeline
 17.3.2.3 Temperature and Humidity Self-Adaptive Intelligent Sensor Systems
 17.3.2.4 Self-Adaptive Smart Sensor System for Fail-Safe Cooling with Fan Speed Control
17.4 References
Chapter 18. Other Sensors, Sensor Systems and UFDC IC Applications

18.1 Sensors from Mechanical Signal Domain
 18.1.1 Flow Sensors
 18.1.2 Level Sensors
 18.1.3 Load Cells
 18.1.4 Position and Proximity Sensors
 18.1.5 Torque Sensors
 18.1.6 Other Sensors and Transducers

18.2 Wireless Sensors

18.3 Sensor Systems based on Universal Frequency-to-Digital Converter (UFDC)
 18.3.1 Low-Cost Tide Measurement System for Water Quality Assessment
 18.3.2 Sensor System for Energy and Power Consumption in One-phase AC Line
 18.3.3 Intelligent Stepper Motor Control
 18.3.4 Remote Laboratory for Smart Sensor Systems Design

18.4 References

Chapter 19. System-on-Chip (SoC), System-in-Package (SiP) and MEMS

19.1 System-on-Chip (SoC)
19.2 MEMS-based Oscillators
19.3 System-in-Package (SiP)
19.4 References

Appendix. Sensor System’s Error Estimation: Engineering Approach
References A

Index

Buy this e-book in pdf: Buy this print (hardcover) book:

See other books published by IFSA Publishing